Ökobilanzen Waschautomat V-ZUG Kombi-Kühlschrank Electrolux

Rolf Frischknecht ESU-services, Uster

Workshop "Timely Replacement TR" $| S \cdot A \cdot F \cdot E |$, 29. Juni 2005

Übersicht

- Fragestellung
- Grundlagen Ökobilanz
- Ökobilanz Waschautomat
- Ökobilanz Kombi-Kühlschrank
- Ergebnisse
- Folgerungen

Fragestellung: timely replacement

- Welches ist der optimale Ersatzzeitpunkt für Haushaltgeräte?
 - finanziell (hier nicht betrachtet)
 - energetisch (Ausführungen Paul Schneiter)
 - bezogen auf Umweltbelastung (Ökobilanz)
- Fallbeispiele:
 - Waschautomat V-ZUG
 - Kombi-Kühlschrank Electrolux

Ökologische Rückzahldauer

- Wichtige Grössen sind:
 - Lebensdauer Neugerät t_N
 - Umweltbelastung Herstellung Neugerät U_H
 - jährl. Betriebsstrombedarf Altgerät E_A
 - jährl. Betriebsstrombedarf Neugerät E_N
 - Umweltbelastung Strombereitstellung $U_{\rm E}$

```
t_{replace} = U_H / [(E_A - E_N) * U_E]
t_{replace} < t_N
```


Systemgrenzen Ökobilanzen

- Rohstoffgewinnung
- Herstellung Ausgangsmaterialien
- Strombereitstellung (Mix Schweiz inkl. Handel)
- Herstellung Gerät
- Distribution
- Nutzung
- Unterhalt / Service
- Entsorgung (Recycling)

Bewertungsmethoden

- Kumulierter Energieaufwand (KEA) fossil, nuklear, hydro, Biomasse
- Umweltbelastungspunkte 1997 schweizerische Umweltziele
- Eco-indicator 99 (H/A)
 holländische Methode mit europäischem Fokus

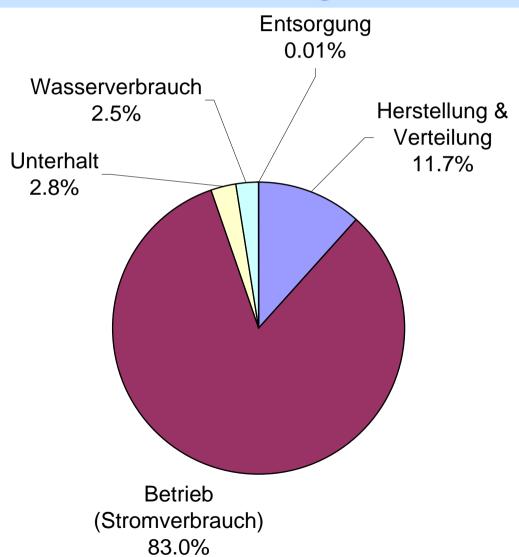
Waschautomat Adora, V-ZUG

Waschautomat

- Waschautomat V-ZUG WA-EF Adora
- Funktionsdauer: 15 Jahre
- 60°C Waschgang
 - Wasserbedarf: 49 Liter
 - Strombedarf: 0.94 kWh
- Bezugsgrösse:
 - 1 Jahr Waschen (300 Waschgänge 60°C)

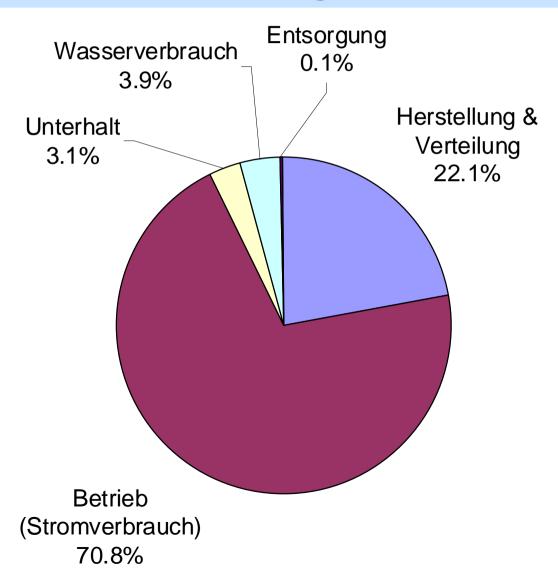
Spezifische Annahme Waschen

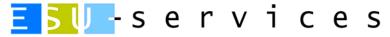
- Auswirkungen von Abwasserreinigung und Waschmittelproduktion und -einsatz ohne Einfluss auf Fragestellung
- => Nicht Teil der Bilanz, aber grob abgeschätzt.

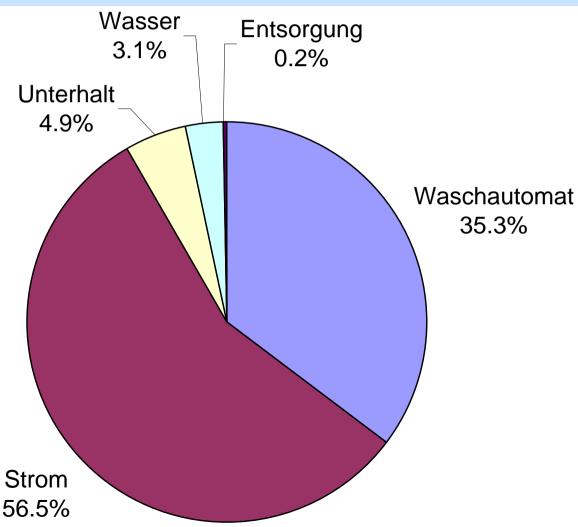


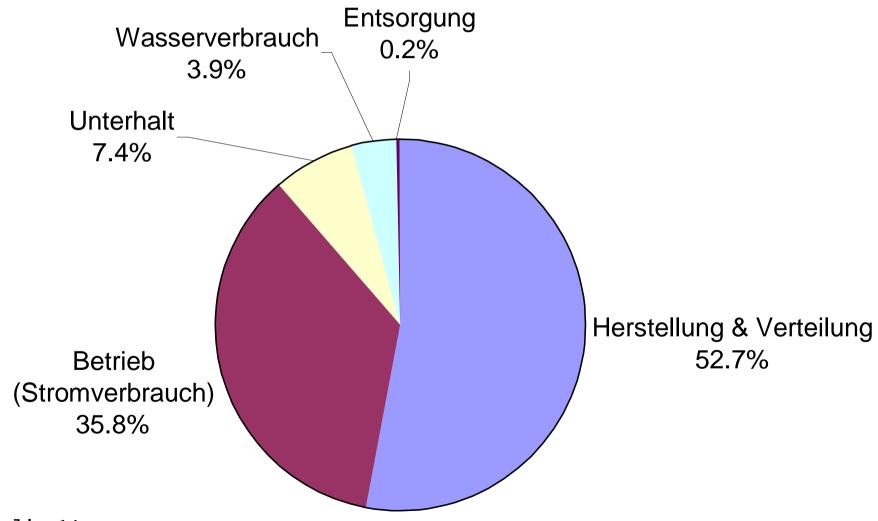
Sensitivitätsanalysen

- Anzahl Waschgänge pro Jahr (150 600)
- Waschtemperatur (40 95 °C)
- Strommix (UCTE statt CH)




Gesamtergebnis KEA


Gesamtergebnis UBP 1997

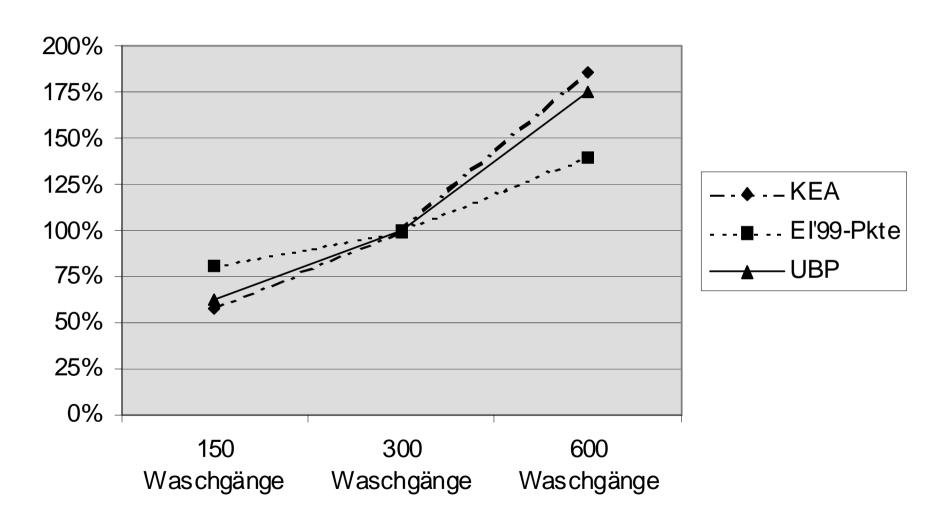

Ökologiebezogene Unternehmens- und Politikberatung

Gesamtergebnis UBP 1997 150 Waschgänge

Gesamtergebnis eco-indicator 99

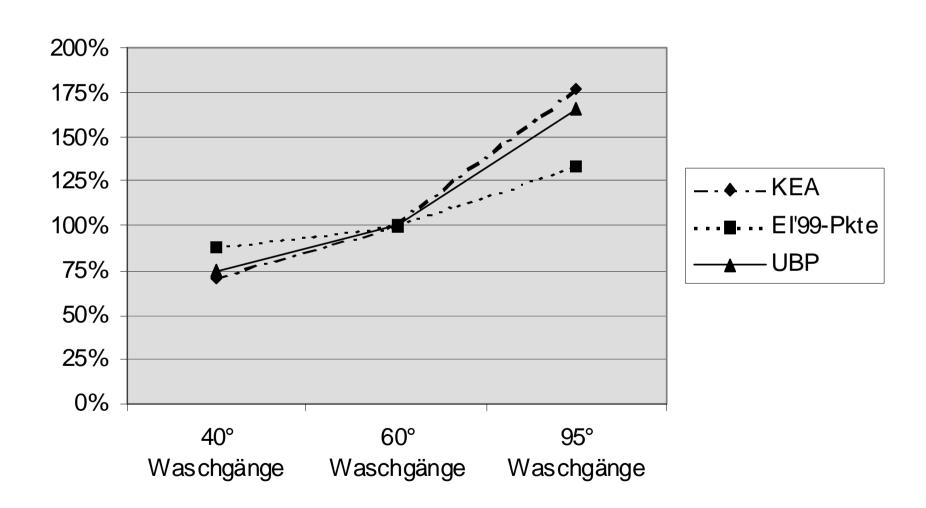
Auswertung Herstellung Waschautomat

	eco-indicator 99		Umweltbelastungs-	
	(H/A)		punkte 1997	
Gusseisen	4.55	9.8%	83700	14.7%
Stahlblech	3.81	8.2%	64100	11.3%
Verzinkung	2.67	5.7%	49300	8.7%
Chromstahl	20.1	43.2%	182000	32.0%
Kupfer	6.3	13.5%	61200	10.8%
elektronische Komponenten	2.25	4.8%	35900	6.3%
Herstellung V-ZUG	1.52	3.3%	27200	4.8%
Übriges	5.3	11.4%	65600	11.5%
Total	46.5	100.0%	569000	100.0%



Abschätzung Waschmittel & Abwasser

Lebensphase	Kumulierter Energie -aufwand	Eco- indicator 99	Ökologische Knappheit 1997
Herstellung & Distribution	9%	24%	12%
Betrieb (Stromverbrauch)	65%	17%	37%
Unterhalt	2%	3%	2%
Wasserverbrauch	2%	2%	2%
Entsorgung	0.01%	0.20%	0.10%
Waschmittelverbrauch	20%	48%	26%
Abwasserbehandlung	2%	6%	21%



Anzahl Waschgänge pro Jahr

Waschtemperatur

Ökologische Rückzahldauer: Verbesserung Energieeffizienz um 25%

In wievielen Jahren ist die Zusatzinvestition durch Stromeinsparung abbezahlt?

300 Waschgänge	KEA	UBP'97	El'99
	MJ-eq.	eco-pts.	pts.
Production, Distribution, Disposal, U _H	4.2E+02	3.9E+04	3.60
Operation (New machine), E _N * U _E * t _N	3.0E+03	1.2E+05	2.14
Operation (Old machine), E _A * U _E * t _N	3.9E+03	1.6E+05	2.85
Improvement, $(E_A - E_N) / E_A$	25%	25%	25%
Difference in env. Impacts, $(E_A - E_N) * U_E * t_N$	9.8E+02	4.1E+04	0.71
Production - operation ratio, $U_H / [(E_A - E_N) * U_E]$	0.42	0.94	5.04
ecol. payback time, $U_H / [(E_A - E_N) * U_E]$	6.4	14.1	75.7

Ökologische Rückzahldauer: Verbesserung Energieeffizienz um 25%

150 Waschgänge	KEA	UBP'97	El'99
	MJ-eq.	eco-pts.	pts.
Production, Distribution, Disposal, U _H	4.2E+02	3.9E+04	3.60
Operation (New machine), E _N * U _E * t _N	1.5E+03	6.2E+04	1.07
Operation (Old machine), E _A * U _E * t _N	2.0E+03	8.2E+04	1.43
Improvement, $(E_A - E_N) / E_A$	25%	25%	25%
Difference in env. Impacts, $(E_A - E_N) * U_E * t_N$	4.9E+02	2.1E+04	0.36
Production - operation ratio, $U_H / [(E_A - E_N) * U_E]$	0.85	1.89	10.09
ecol. payback time, U _H / [(E _A - E _N) * U _E]	12.7	28.3	151.3

Effizienzsteigerung: Break-even

Wie gross muss die Reduktion im Betriebsstrombedarf sein, um dieselbe Umweltbelastung zu verursachen wie die gesamte Herstellung (inkl. Entsorgung)?

150 Waschgänge	KEA	UBP'97	El'99
	MJ-eq.	eco-pts.	pts.
Production, Distribution, Disposal, UH	4.2E+02	3.9E+04	3.6E+00
Operation (New machine), EN * UE * tN	7.4E+02	3.1E+04	5.4E-01
Operation (Old machine), EA * UE * tN	1.2E+03	6.9E+04	4.1E+00
Improvement, (EA - EN) / EA	36%	56%	87%
Difference in env. Impacts, (EA - EN) * UE * tN	4.2E+02	3.9E+04	3.6E+00
Production - operation ratio, UH / [(EA - EN) * UE]	1	1	1
ecol. payback time, UH / [(EA - EN) * UE]	15	15	15

Ökologiebezogene Unternehmens- und Politikberatung

Kombi-Kühlschrank ERB 3105, Electrolux

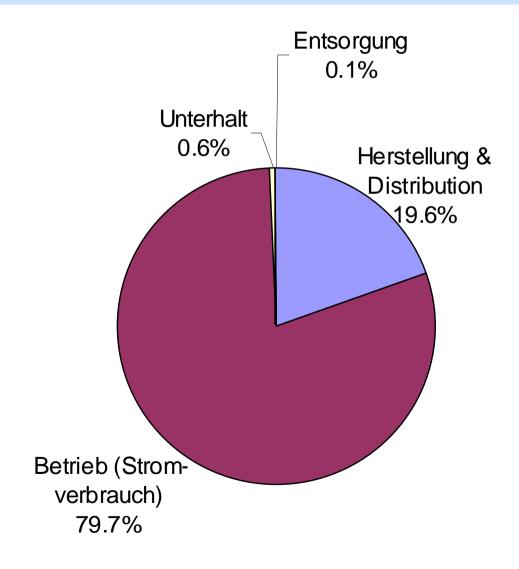
Kombi-Kühlschrank

- Kombi-Kühlschrank ERB 3105
- Nutzinhalt:

Kühlung: 192 Liter

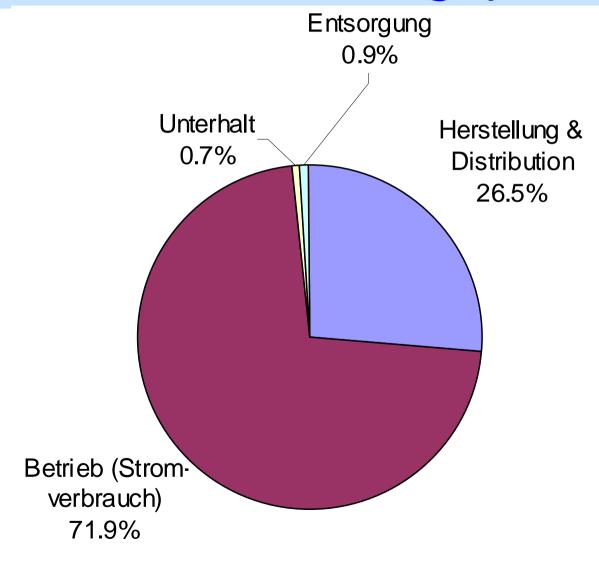
Tiefkühlung: 92 Liter

- 2 Kompressoren
- Funktionsdauer: 15 Jahre
- Bezugsgrösse:
 - 1 Jahr 1921 Kühlen/ 921 Gefrieren

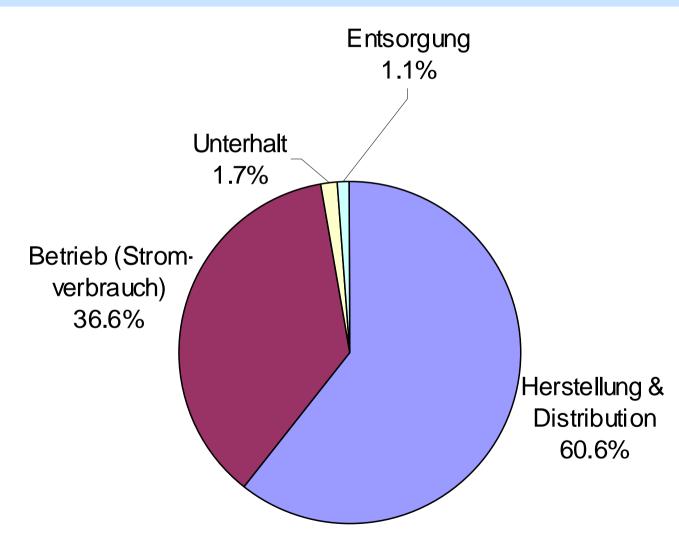


Kombi-Kühlschrank

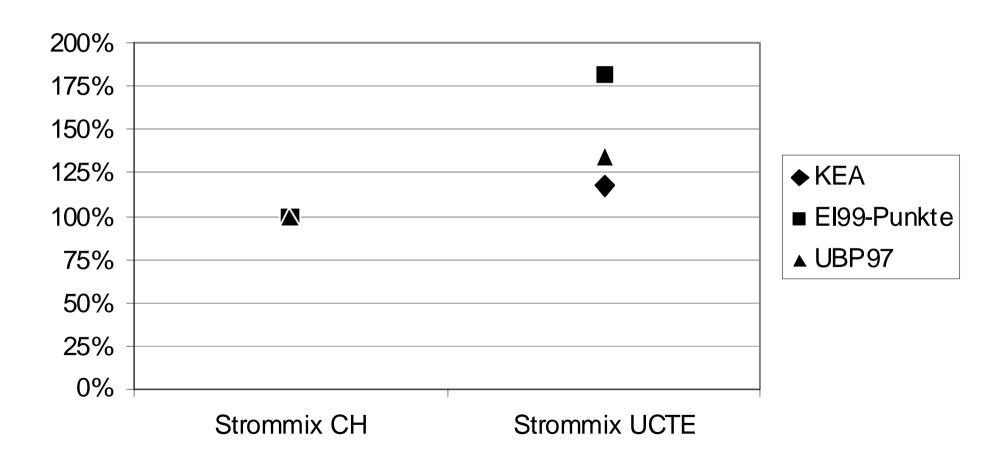
- Strombedarf: 194 kwh / Jahr (0.53kwh/Tag)
- Gesamtgewicht: 94kg (60% Stahl)
- Propan als Kältemittel
- Butan als Schäummittel
- Sensitivität: Strommix (UCTE statt CH)



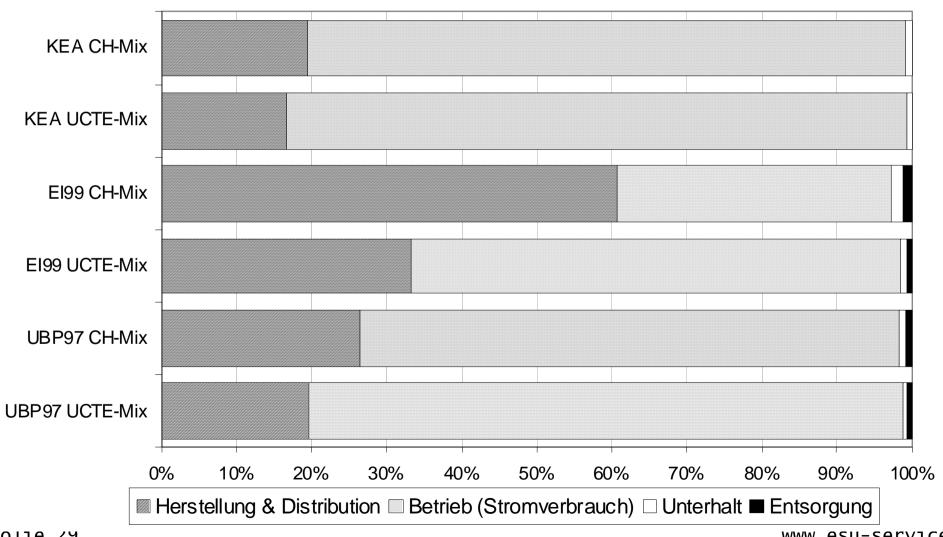
Kumulierter Energieaufwand (KEA)



Umweltbelastungspunkte 1997



Eco-indicator 99 (H,A)



Sensitivitätsanalyse Strommix

Sensitivitätsanalyse Strommix

Ökologische Rückzahldauer

	KEA	UBP'97	El'99
Effizienzsteigerung	50%	50%	50%
ökologische Rückzahldauer	3.7	5.7	25.3

Effizienzsteigerung	20%	27%	62%
ökologische Rückzahldauer	15.0	15.0	15.0

Folgerungen Waschautomat

- Waschmittelverbrauch und Abwasserreinigung insgesamt sehr wichtig
- Grosse Bedeutung Strombedarf (Anzahl Waschgänge, Waschtemperatur) und Strommix (Schweizer Strom, EU Strom oder Ökostrom) in der Nutzung
- Nutzungsintensität ist ebenfalls mitentscheidend

Folgerungen Kombi-Kühlschrank

- Zwei Kältekreisläufe erhöhen die Energieeffizienz und bringen erhöhten Materialaufwand mit sich
- Je nach Betriebsort (Land, Strommix) des Kühlschranks ist die Betriebsphase wichtiger

Folgerungen Weisse Geräte allg.

- Bisherige Ergebnisse "Graue Energie" bestätigt
- Bei umfassenderer Betrachtung erhöhte Bedeutung der Herstellung
- Metallkomponenten wichtig bei Bilanz Geräteherstellung
- Elektronische Komponenten weniger relevant als erwartet

Folgerungen Rückzahldauer

- Ökologische Rückzahldauer höher als Energie-Rückzahldauer
- Stromeinsparung Altgerät zu Neugerät muss mindestens Faktor 2 betragen
- Heutige A++ Klasse-Geräte:
 Schwerpunkt auf Langlebigkeit legen

Dank

- Auftraggeber
 - | S·A·F·*E* |: Paul Schneiter
- Hersteller-Informationen

V-ZUG: Stefan Bräuer, Zug

Electrolux: Gianluca Brotto, Brüssel