

fair consulting in sustainability

Life Cycle Assessment of improvement options in dairies

Niels Jungbluth, Regula Keller ESU-services Ltd, Schaffhausen <u>https://www.esu-services.ch/</u>

SUSMILK Final Conference Santiago de Compostela, Spain, 22-23.9.2016

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration

Content of presentation

- Methodology and key questions
- Results of the Life Cycle Assessment
 - Conducted analyses
 - Explanation of the weighting and normalizing approaches (value choices)
 - Results and recommendations for heat, cooling and electricity
 - Results for optimization

GENERAL INFORMATION ON WP7

https://www.esuservices.ch

Page 3

Content of the WP 7

- Objective:
 - Environmental, economic and social impacts caused by the new components and concepts
 - Exergy-based analysis (Richtvert)
 - Economical/Social analysis (Fraunhofer Umsicht)
- Based on LCA standards and new (EU) developments
- Scenarios and sensitivity analysis are conducted
- Weaknesses and improvement potentials are identified

Deliverables WP7

Delive- rable Number	Deliverable Title	Nature	Dissemi- nation level	Month
D7.1	Goal and scope definition for the life cycle assessment	Ο	CO	12
D7.2	Life cycle inventory data in electronic format	Ο	CO	19
D7.3	Report on life cycle assessment, economic assessment, potential employment effects and exergy- based analysis	R	PU	31
D7.4	Recommendations for the dairy industry	R	PU	36

https://www.esuservices.ch

Page 5

Tasks within the WP

- 7.1: Method description for LCA and literature review
- 7.2: Goal and scope definition
- 7.3: Modelling of life cycle inventories
- 7.4: Life cycle impact assessment
- 7.5: Exergy-based analysis
- 7.6: Result interpretation, sensitivity analysis
- 7.7: Cost analysis and employment effects
- 7.8: Recommendations

Input or interactions with other partners

- Within WP7:
 - Expert input of Richtvert for exergy-input analysis
 - Expert input of Fraunhofer for cost analysis, employment effects and recommendations
 - Data from project partners developing components
- Inputs from other WPs:
 - WP1: Input for goal & scope definitions and data for the inventories and analysis
 - WP5: Key data and assumptions for improvement scenarios
- Inputs to other WPs:
 - WP9: Input for the communication and dissemination

LIFE CYCLE ASSESSMENT

https://www.esuservices.ch

Page 8

Life Cycle Assessment methodology

- ISO 14040/44
- Balance of all in- and outputs
- Life cycle from cradle to gate
- Assessment of different environmental impacts (e.g. climate change, water depletion, resource depletion)

ISO standard 14040: LCA

GOAL AND SCOPE

https://www.esuservices.ch

Page 11

Goal of the LCA

- Analyze a baseline model of an European dairy plant
- Simplified model with regard to product portfolio and inclusion of waste management
- Analyze and evaluate improvement scenarios for technologies delivering heat, electricity and chilling
- Some SUSMILK improvement options concerning e.g. concentration of raw milk or treatment of effluents could not be modelled in the LCA due to lack of data at the time of finalizing the data collection.

Key questions to be answered with the LCA

The following key questions are answered in this LCA study:

- How relevant are the energy and water uses in different process stages in the dairy from an environmental point of view?
- Which influence on the environmental impacts can be expected by replacing conventional technologies by other state-of-the-art or new (SUSMILK) technologies?

Object of investigation: dairies

Dairy plant	Raw milk input (I/year)	Distance farm-plant (km)	Milk	Cheese	Yoghurt	Cream	Butter	Other dairy products	Energy use
Feiraco	106'003'117	30 (1-150)	х		х	х		Milk shake, Laban	Natural gas
Karwendel (Exquisa)				Х					
Mlekara			х			х			
Queizuar	6'644'890	200		х		х		Cheese whey	Diesel
Wiegert			х	Х	Х		Х		

- 5 dairies across Europe
 - Specific size
 - Specific portfolio: multi-product milk processing chain
 - Only Exquisa has a single product processing chain

System boundaries: cradle-to-gate

- Foreground system:
 - Milk processing
 - Energy & Water, but no packaging material
 - Data from partners
- Background system:
 - Feed cultivation
 - Raw milk production
 - > Data from ESU database (CH, RO)
 - Data from ecoinvent database

Functional unit for the LCA

• Selected functional unit:

Raw milk input in liter

- \rightarrow Focus of the project is milk processing
- \rightarrow Investigation of single dairy products is not foreseen
- The reference flow for the modelling: Raw milk input per day (600 000 l) of operation for the generic dairy model
- The reference year is 2013

Task 7.3 resp. Deliverable D 7.2: Data Collection LIFE CYCLE INVENTORY ANALYSIS (LCI)

https://www.esuservices.ch

Page 17

Life cycle inventory analysis (LCI)

- LCI is the basis for the LCA (Life Cycle Assessment)
- LCI includes all material and energy flows of each modelled process:
 - Inputs and outputs (e.g. energy, water, chemicals, ..)
 - Emissions to air, water and soil
 - Resource uses (energy, water, land)
- LCI (Del. 7.2) has been delivered in Month 25

Example inventory data

defined process ↓

		F		G	J	K	L	
			Location	structure-Process	Unit	round wood, Scandinavian softwood, under bark, u=70% at		
3 4	Inputs for the	Inputs for the Location					forest road	
5 6	new process ↓	rastructureProcess Unit	Locati	ion↓		↓ U	Jnit ↓ value	S
7	ammonium sulphate, as N,		RER	0	kg	1.3E+0		
8	lubricating oil, at plant			RER	0	kg	4.3E-2	
9	gravel, crushed, at mine			CH	0	kg	3.2E+2	
10	diesel, burned in building m		GLO	0	MJ	8.0E+1		
11	power sawing, without cata		RER	0	h	7.1E-2		
12	transport, lorry 16t		RER	0	tkm	1.6E+1		
13	softwood, Scandinavian, st		NORDEL	0	m3	1.0E+0		

\rightarrow Imported to LCA software

Example data documentation

-services

fair consulting in sustainabi

Reference function	round wood, Scandinavian softwood, under bark, u=70% at forest road, NORDEL, [m3]					
name	round wood, Scandinavian softwood, under bark, u=70% at forest road					
localName	Nadelrundholz, Skandinavien, Festkubikmeter, u=70%, ab Waldstrasse					
infrastructureProcess	no					
unit	m3					
category	wooden materials					
subCategory	extraction					
localCategory	Holzbaustoffe					
localSubCategory	Gewinnung					
amount	1					
includedProcesses	This module includes material and energy amounts for stand establishment, tending, site development, thinnings and final cutting of scandinavian round softwood (logs for sawmill), its transport to the nearest forest road as well as the land and materials use for the forest roads					
generalComment	The volume does not include the bark. CO2 assimilation is based on 49.4% carbon in the wood. Biomass energy equals gross calorific value including bark.					
infrastructureIncluded	yes					
datasetRelatesToProduct	yes					
Geography	round wood, Scandinavian softwood, under bark, u=70% at forest road, NORDEL, [m3]					
location	NORDEL					
text	Typical data for the forest industry in Scandinavia from a finnish LCA database					
Technology	round wood, Scandinavian softwood, under bark, u=70% at forest road, NORDEL, [m3]					
text	Modern average technology used in Scandinavia					
Time period	round wood, Scandinavian softwood, under bark, u=70% at forest road, NORDEL, [m3]					
Fertig	🥥 Internet					

Object of investigation

- LCA dairy model
 - Based on generic dairy model (WP1 data)
 - Plus additional inputs (e.g. infrastructure)
- LCA improvement options
 - Based on information from WP1, WP5 and data from questionnaires answered by project partners about their technical components

Additional inputs - background processes

- For the LCA we need more data than provided by the generic dairy model
- Further data collection for background processes
 - Literature data for full list of Input/Output flows in dairies
 - Delivery of materials and milk to the dairy
 - Effluent pre-treatment in dairies and final treatment in wastewater treatment plants

Schematic depiction of models

Page 23

Grouping of inputs into process stages for analysis of LCA dairy model

https://www.esuservices.ch

-services

in susta

LIFE CYCLE IMPACT ASSESSMENT

https://www.esuservices.ch

Page 25

What was analyzed?

- LCA dairy model (operation of dairy for one day)
- Provision of heat
- Provision of cooling
- Provision of electricity
- Sensitivity analyses
- Optimized dairy

Life cycle impact assessment categories

according to the ILDC recommendations

Impact category	Indicator unit
Climate change	kg CO ₂ eq
Ozone depletion	kg CFC-11 eq
Freshwater ecotoxicity	CTUe = Comparative Toxic Unit for ecosystems
Human toxicity, cancer effects	CTI lh - Componentive Taxis unit for humans
Human toxicity, non-cancer effects	CTON = Comparative Toxic unit for humans
Particulate matter	kg PM _{2.5} eq
Ionizing radiation (Human health effects)	kg U ²³⁵ eq (to air)
Photochemical ozone formation	kg NMVOC eq
Acidification	mol H+ eq
Terrestrial eutrophication	mol N eq
Aquatic autrophication	Freshwater: kg P eq
	Marine: kg N eq
Abiotic resource depletion	kg antimony (Sb) eq
Water depletion	m ³ water use related to local scarcity of water
Land use	kg C deficit
Cumulative Exergy Demand (CExD)	MJ-eq

-services

Life Cycle Impact Assessment

Cumulative LCI results Classification Characterization Normalization Grouping

CO₂, CH₄: Greenhouse gasses,

Global warming potential (GWP)

CO₂=1; CH₄=23kg CO₂-equivalent

GHG-emission Europe: 6.5 Mia. t CO_2 -eq.

Sorting and ranking

Aggregation based on weighting principles

Environmental indicator

Weighting

Calculation of the unweighted results

- ILCD & Exergy
 - Midpoint, no weighting of environmental impacts
 - 15 categories of ILCD + exergy (according to ISO)
 - E.g. climate change, water use etc.
- Detailed discussion in public Del. 7.3 <u>https://www.esu-</u>

services.ch/projects/lcafood/susmilk/

Page 29 Too complicated for this presentation

Calculation of the weighted single score results: SUSMILK-points

- «SUSMILK-points»: value choices of project partners
 - Normalization ("Reference"): Total European emissions
 - Weighting: average of chosen percentages by partners

Fair consulting in sustainability

Calculation of the weighted single score results: ESU-points

- «ESU-points»: value choices of LCA experts
 - Normalization, three approaches:
 - Global emissions / resource uses per person and day
 - Impact of LCA dairy operation, including milk
 - Impact of LCA dairy operation, excluding milk
- Weighting according to reliability of data (back-& foreground), reliability of method, overlap and the focus of the SUSMILK- project https://www.esu-services.ch

ESU-points: Criteria of weighting

		Robustness [¬] European normalization	Reliability, LCI, background	Reliability, LCI, foreground	Reliability, LCIA	Overlap, LCI	Focus SUSMILK	Overall score	Weighting, ESU
Climate change	kg CO2 eq	100%	100%	100%	100%	100%	100%	100.0%	23.0%
Ozone depletion	kg CFC-11 eq	60%	20%	80%	100%	100%	50%	8.0%	1.8%
Human toxicity, non-cancer effects	CTUh	20%	50%	80%	60%	100%	50%	12.0%	2.8%
Human toxicity, cancer effects	CTUh	20%	50%	80%	60%	100%	50%	12.0%	2.8%
Particulate matter	kg PM2.5 eq	100%	90%	80%	100%	100%	50%	36.0%	8.3%
lonizing radiation	kBq U235 eq	60%	90%	100%	80%	100%	50%	36.0%	8.3%
Photochemical ozone formation	kg NMVOC eq	60%	100%	100%	80%	100%	50%	40.0%	9.2%
Acidification	molc H+ eq	80%	100%	100%	80%	33%	50%	13.3%	3.1%
Terrestrial eutrophication	molc N eq	60%	100%	100%	80%	33%	50%	13.3%	3.1%
Freshwater eutrophication	kg P eq	40%	100%	100%	80%	100%	50%	40.0%	9.2%
Marine eutrophication	kg N eq	40%	100%	100%	80%	33%	50%	13.3%	3.1%
Freshwater ecotoxicity	CTUe	20%	100%	100%	60%	100%	50%	30.0%	6.9%
Land use	kg C deficit	60%	90%	100%	40%	100%	50%	18.0%	4.1%
Water depletion	m3 water eq	40%	80%	100%	40%	100%	100%	32.0%	7.4%
Abiotic resource depletion	kg Sb eq	20%	30%	80%	80%	50%	50%	4.8%	1.1%
Cumulative exergy demand	MJ-eq	100%	80%	80%	80%	50%	100%	25.6%	5.9%

LCA dairy model

- Analysis of process stages with and without the milk input
- Analysis of products
- Allocation: Comparison of the split of inputs in the LCA dairy model to the suggested split of the inputs by Feitz et al. (2007)

Grouping for analysis of LCA dairy model

Name of the group	Description
Raw milk input	Input of raw milk for processing; purchased products not included
Purchased products, dairy plant, additions	Purchased ingredients, infrastructure of dairy plant, production of raw milk and additional impacts of processing considered with literature data (not including transport to dairy, milk itself or additional electricity)
Transport of milk	Refrigerated transport of raw milk to the dairy
Wastewater	Treatment of wastewater inside and outside the dairy, but not including electricity for pre-treatment
Consumer packaging	Product packaging (Production and disposal)
Electricity, surplus	Additional energy use according to the LCA dairy model
Electricity	Electricity use according to generic dairy model
Steam for production	Heat use delivered by steam
Steam for CIP	Steam used for cleaning the machinery internal
Chemicals	Chemicals used for CIP
Water use	All inputs needed for water use, including cooling water and infrastructure, but without the electricity use
Indicators shown in the analysis

• Climate change:

Global warming potential, time horizon of 100 years (IPPC)

- Water resource depletion:
 Scarcity adjusted amount of water used (depending of source of water & country)
- Mineral, fossil & renewable resource depletion: Scarcity of mineral resource, «reserve base», i.e. identified resources that meets criteria related to current mining
 practice.

LCA dairy model: With raw milk production

LCA dairy model: With raw milk production

Page 39

LCA dairy model: Without raw milk input

- Purchased products, dairy plant, additions
- Consumer packaging
- Steam for production
- Water use

- Transport of raw milk
- Electricity, surplus
- Steam for CIP

- Effluent (pre-) treatment
- Electricity
- Chemicals

LCA dairy model: Without raw milk input

- Consumer packaging
- Steam for production

Steam for CIP

- Electricity
- Chemicals

Water use

LCA dairy model: conclusions

- Milk input main impact in most categories
- Without milk
 - Transport, packaging, waste water treatment: main, depending on impact category
 - Chemicals: Little impact
 - Packaging, steam: climate change

Analysis of products: Allocation method used

- Allocation = how are inputs & outputs e.g. of a process distributed to the useful products
- Mostly avoided by sub-processes
- Additional inputs (i.e. dairy plant):
 Added to the raw milk; allocation to products
 depending on raw milk (cream & skim milk) input
- Separation of raw milk into cream and skim milk: At the moment allocation based on dry matter://www.esu-

Carbon footprint of processing & transport Without raw milk input, per kg of product

Impact on climate change of different dairy products per kg

Analysis of products

Columns in the back: total GWP (left axis). Raw milk production: light grey, dairy operation: dark grey). The colored columns show the subdivision of the dairy operation in process stages (right axis).

Conclusion: Preliminary analysis of products

Main impacts

- Packaging
 - -> No packaging: cream 40% & concentrated milk
- Purchased ingredients -> milk powder for yogurt
- Steam for production -> for concentrated milk
- Transport and electricity

Provision of heat: Considered options

- Natural gas
 - Boiler (reference, ecoinvent)
 - Cogeneration with motor and turbine (ecoinvent)
 - Gas-engine driven heat pump (Simaka; heat: waste & cogen. natural gas)
- Light fuel oil boiler (ecoinvent), diesel boiler (Queizuar)
- Wood
 - Cogeneration (ecoinvent)
 - Pellet boiler (Queizuar/Solarfocus)
- Solar collectors
 - Small system on roof (Queizuar/Solarfocus)
 - Large system on field & on roof (Solarfocus) + location specific

services.ch

Page 47 sensitivity analysis

Provision of heat: Results ILCD

Referenced to natural gas (100%)

			Conon	Conon							Color	Caa
	_		Cogen.	Cogen.			Pellet boiler	_	Large solar	Large solar	50iai-	Gas-
	Light fuel	Diesel	(motor),	(turbine),	Cogen.,	Pellet	with narticle	Small solar	svstem flat	system,	pellet-	engine
Impact category	oil boiler	boiler	natural	natural	wood	boiler	separator	system (ES)	roof(DE)	open	system	driven heat
[·····································			gas	gas			Separator			ground (DE)	(ES)	pump
Climate change	127%	129%	37%	55%	12%	14%	14%	8%	6%	6%	13%	37%
Ozone depletion	9%	9%	41%	49%	1%	9%	9%	3%	2%	2%	9%	36%
Human toxicity, non-cancer effects	2592%	385%	44%	48%	1072%	1064%	1064%	492%	260%	252%	1002%	45%
Human toxicity, cancer effects	180%	159%	58%	43%	62%	183%	184%	414%	159%	145%	208%	45%
Particulate matter	559%	600%	43%	57%	682%	2082%	889%	140%	78%	74%	1871%	39%
lonizing radiation	131%	130%	13%	32%	55%	269%	270%	195%	186%	181%	261%	65%
Photochemical ozone formation	220%	360%	73%	159%	97%	189%	189%	29%	18%	17%	171%	39%
Acidification	514%	485%	67%	145%	189%	236%	236%	85%	50%	48%	220%	39%
Terrestrial eutrophication	232%	333%	80%	214%	266%	285%	285%	37%	23%	23%	258%	37%
Freshwater eutrophication	155%	150%	22%	36%	55%	431%	432%	1443%	548%	529%	542%	78%
Marine eutrophication	231%	326%	80%	214%	145%	287%	287%	34%	21%	21%	259%	37%
Freshwater ecotoxicity	2750%	729%	55%	44%	487%	878%	880%	592%	273%	258%	848%	53%
Land use	695%	702%	41%	57%	243%	1235%	1235%	35%	18%	2072%	1105%	37%
Water depletion	424%	424%	22%	35%	57%	171%	171%	246%	203%	197%	179%	62%
Abiotic resource depletion	153%	150%	39%	47%	55%	1638%	1640%	1499%	627%	610%	1632%	104%

Provision of heat: SUSMILK and ESU-points

Referenced to natural gas (100%)

Fair consulting in sustainability Provision of heat: Single Score

Fair consulting in sustainability Provision of heat: Single Score

Crucial impacts for heat

- Large solar collector fields: Land use; tin & copper use for abiotic resource depletion
- Pellet boiler: emissions from combustion, especially for particulate matter
- Options with natural gas: CO2-emissions for climate change
- Heat pump: Combustion of natural gas (NOx, CO2) for different categories

Sensitivity Analysis: heat at solar collectors on flat roof

-services

conculting in sustaina

Global warming potential, depending on irradiation https://www.esu-

services.ch

Page 53

Recommendations heat provision

- Recommended (best overall results)
 - Heat pump using waste heat
 - Cogeneration (motor) with natural gas
- Ambiguous
 - Solar collector: Depending on location and on value choice, installation on roof recommended
 - Cogeneration (turbine)
 - Pellet boiler, cogeneration with wood: Reduction for climate change, increase for particle emissions
- Not recommended:
 - Light fuel oil boiler, diesel boiler

Provision of cooling: Considered options

- Electrical chiller (reference, own model)
- Groundwater cooling (own model)
 - At Oberhausen + location specific sensitivity analysis
- Absorption chiller
 - Driven by waste heat (Parker)
 - Driven by heat from cogeneration (Parker, generic data)

Provision of cooling: ILCD

Referenced to ice water at electric chiller (100%)

Impact Category	Cold water, 6°C, at absorption chiller 100 kW (heat from cogen)	Cold water, 7°C, at absorption chiller 50 kW (waste heat)	Cold water, 7°C, at absorption chiller 50 kW (heat from cogen)	Cold water, 12°C, at electric chiller	Cold water, 12°C, at groundwater pump
Climate change	113%	4%	80%	100%	3%
Ozone depletion	21%	0%	13%	100%	0%
Human toxicity, non-cancer effect	127%	9%	21%	97%	6%
Human toxicity, cancer effects	191%	28%	49%	97%	9%
Particulate matter	53%	6%	19%	100%	4%
lonizing radiation	25%	5%	6%	100%	3%
Photochemical ozone formation	82%	5%	105%	100%	4%
Acidification	57%	5%	36%	100%	4%
Terrestrial eutrophication	72%	6%	102%	100%	4%
Freshwater eutrophication	66%	5%	7%	99%	4%
Marine eutrophication	67%	5%	103%	100%	4%
Freshwater ecotoxicity	141%	14%	25%	98%	6%
Land use	149%	7%	74%	100%	52%
Water depletion	127%	5%	7%	99%	3%
Abiotic resource depletion	234%	17%	23%	97%	5%

Provision of cooling: Crucial impacts

- For most categories, ground water & absorption chiller (waste heat):
 - -> Electricity demand
- Categories human toxicity, resource depletion:
 - -> Steel input for absorption chiller
 - -> Steel, iron, copper input for groundwater pump

Sensitivity Analysis of ground water cooling

Global warming potential, depending on ground water depth and temperature Page 58 services.ch

Provision of cooling: SUSMILK- and ESU-Points

Referenced to ice water at electric chiller (100%)

Recommended

-services

in susta

- Groundwater cooling
 - -> if no water scarcity and if local laws allow it
- Absorption chiller with waste heat
 - -> if waste heat available
- Ambiguous
 - Absorption chiller with heat from cogeneration
 - -> Less reduction potential

Electricity: Considered options

- From grid (ecoinvent, reference)
- From cogeneration (ecoinvent)
 - With natural gas: Motor, turbine
 - With wood

Provision of electricity: Results ILCD

Referenced to electricity from European grid (100%)

	Cogen. (motor), natural gas	Cogen. (turbine), natural gas	Cogen., wood
Climate change	121%	265%	19%
Ozone depletion	300%	636%	4%
Human toxicity, non-cancer effects	14%	28%	211%
Human toxicity, cancer effects	22%	40%	20%
Particulate matter	16%	35%	135%
lonizing radiation	1%	3%	2%
Photochemical ozone formation	134%	349%	70%
Acidification	42%	116%	50%
Terrestrial eutrophication	130%	374%	153%
Freshwater eutrophication	2%	4%	3%
Marine eutrophication	132%	379%	84%
Freshwater ecotoxicity	11%	20%	75%
Land use	91%	219%	309%
Water depletion	2%	4%	2%
Abiotic resource depletion	10%	19%	11%
Cumulative exergy demand	75%	187%	11 <u>0%</u>

Electricity: SUSMILK- and ESU-points

Referenced to electricity from European grid (100%)

Page 63

Recommendations electricity

- Recommended
 - Cogeneration (motor) with natural gas
 - Cogeneration with wood (less good results)
 -> particulate matter and human toxicity
- Ambiguous
 - Cogeneration (turbine)
- \rightarrow In line with recommendations for heat

Results daily dairy operation

- Raw milk production is the main impact
- Without milk
 - Transport, packaging, waste water treatment: main inputs, depending on impact category
 - Chemicals: little impact
 - Steam, packaging: relevant for climate change

Scenarios for technology improvements

Scenario	Partner	Role in technology development	Energy	Energy supply	Dairies involved	Work package
1	Simaka	Development of a new heat pump and use of water as steam carrier		Heat (hot water)	Karwendel	WP2
3	Solarfocus	Development of high temperature solar panels and weather-based control system		Heat (hot water)	Queizuar	WP2
2	Parker	Development and in-house testing of absorption chiller prototype	Solar heat Waste heat	Cooling energy	Feiraco	WP2
4	Acram	Development and demonstration of membrane filtration for milk pre- concentration at farm			Wiegert	WP3
5	Fraunhofer	Band belt drying of milk concentrate	Waste heat		Wiegert	WP3
6	FINS	Development of membrane filtration to reuse CIP solutions			Mlekara	WP4
7	LNEG KTU	Development of technologies for biogas and bioethanol production	Wastewater whey	Biogas (CHP) Bioethanol	No demonstration	WP4

Improvement scenarios: Modelled options

- LCA dairy model, based on generic dairy model
 - Reference value
- Exergy optimized
 - Reduction of heat and electricity use by heat exchangers, CHP
- Environment optimized
 - Groundwater cooling, CHP for heat and electricity, roof top solar collectors with 4000 m2

Improvement scenarios

Referenced to the generic dairy model (100%)

Interpretation and Conclusion

- Reduction of about 25% compared to average dairy operation is possible
- The ideal energy solution depends on the specific situation
 - Location (irradiation, groundwater level, temperature)
 - Heat (temperature) and cooling demands
 - Waste heat availability
- A major share of environmental impacts is not influenced by the improvement options (e.g. delivery of raw milk)

Susmilk

fair consulting in sustainability

Milk Processing

Life cycle assessment of a detailed dairy model & recommendations for the allocation to single products

Niels Jungbluth, Regula Keller ESU-services Ltd, Schaffhausen https://www.esu-services.ch

LCA food 2016 Dublin, Ireland, 19.-21. October 2016

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration

ALLOCATION

https://www.esuservices.ch

Page 71

Content of presentation

- LCA dairy model
 - Assumptions, build-up
- Two topics
 - A: Dairy operation
 - Analyses of process stages
 - B: Allocation of environmental impacts to dairy products
 - Global warming potential per kg of dairy product
 - Comparison with allocation of Feitz et al.
 - For each topic, goal, scope, methods, results and interpretation is shown

LCA dairy model

- Model assumptions
 - 600'000l raw milk processed per day
 - Products: UHT milk, yogurt, cream, concentrated milk
- Detailed model build-up
 - More than 40 sub-processes in the dairy modelled
 - Based on literature and values from experts
 - Complemented with additional inputs to include all inputs of the dairy operation from cradle to gate
 - Allocation of raw milk separation with milk solids

Goal A

A) Which process stages of dairy operation are important from an environmental point of view?

Scope A

- Impact Assessment Methods
 - 15 ILCD midpoint categories
 - Cumulative exergy demand
- Functional unit
 - A) one day of operation
- Scope: From cradle to dairy gate, incl. disposal of packaging
 - A) But excluding raw milk input

Methods A: Inputs groups for analysis

- Raw milk production
- Purchased products; dairy plant; additions
- Transport of raw milk
- Effluent (pre-)treatment
- Consumer packaging (production and disposal)
- Electricity
- Steam for production /CIP
- Chemicals used for CIP
- Water use and cooling (excl. electricity use)

Results A: Dairy operation

nttps://www.esuservices.ch

Interpretation A: Dairy operation

- High share in many categories
 - Transport of raw milk
 - Packaging (incl. disposal)
- High share for climate change and exergy
 - Heat, provided by natural gas boiler
- Low share
 - Chemicals for cleaning in place

Goal B

B) How can energy, water and chemical use of a dairy be allocated to the dairy products?

https://www.esuservices.ch

Scope B

- Impact Assessment Methods
 - Climate Change
 - Selected single inputs per kg of product
- Functional unit
 - B) 1kg of dairy product
- Scope: from cradle to dairy gate, incl. disposal of packaging
 - B) Including raw milk input

Methods **B**

- Climate Change
 - Same input groups as for A
 - Showing the impact of raw milk plus transport separately from the other inputs
- Selected single inputs per kg of product
 - For products yogurt, cream (40%) and UHT milk
 - Inputs according to the detailed LCA dairy model
 - Allocation of sum of inputs (3 products) of the LCA dairy model according to the method suggested by Feitz et al.

Results B: Dairy products

RK46 Weglassen?, ist irgenwie zu viel Regula Keller; 20.07.2016

Folie 82

Interpretation B: Dairy products

- All products
 - Raw milk input and transport have the highest share
- Yogurt, cream (30%), UHT milk
 - Packaging has a high share (other products are unpacked)
- Concentrated milk
 - heat input has highest share

Results B: Allocation

b) Allocation of the LCA dairy model inputs (based on 3 products) according to Feitz et al. (2007)								
	Raw milk	Water use	Elec- tricity	Themal energy	Alkaline cleaners	Acid cleaners	Waste water	
	kg	kg	MJ	MJ	g	g	I	
Yogurt (0.2/3.4% fat)	1.2	2.5	1.0	0.9	4.5	0.745	2.535	
Cream (40% fat)	3.6	1.3	0.2	0.3	4.5	0.745	1.358	
UHT milk (3.7% fat)	1.1	1.3	0.4	0.5	4.5	0.745	1.358	
c) Inputs according to the LCA dairy model								
	Raw milk	Water use	Elec- tricity	Steam use	NaOH 50 %	HNO3 70 %	Waste water	
Yogurt (10% fat)	1.4	1.8	0.5	0.6	1.325	0.096	1.776	
Cream (40% fat)	3.6	2.4	0.8	0.8	1.709	0.124	2.364	
UHT milk (3.5% fat)	1.0	1.2	0.3	0.4	6.070	1.086	1.261	

Interpretation B:

- Water, electricity and heat
 - More allocated to cream based on the LCA dairy model compared to suggestion of Feitz et al.
- Amount of chemicals
 - No differentiation given in Feitz et al.
 - LCA dairy model: highest for UHT milk, lower for cream, lowest for yogurt, based on detailed CIP model

SUMMARY & OUTLOOK

https://www.esuservices.ch

Questions?

https://www.esu-

services.ch/projects/lcafood/susmilk/

Jungbluth N., Keller R., Doublet G., König A. and Eggenberger S. (2016) Report on life cycle

assessment, economic assessment, potential employment effects and exergy-based analysis: Part I -

LCA. Deliverable 7.3. SUSMILK - Re-design of the dairy industry for sustainable milk processing/www.esu-

Seventh Framework Programme: Project no. 613589. Funded by EC. Deliverable D7.3. services.ch

WEITERE FOLIEN

https://www.esuservices.ch

Generic Dairy model

https://www.esuservices.ch

Generic dairy model pasteurized milk

Preliminary data for generic dairy per liter milk input

Input		Generic dairy model
	Country	DE
Raw milk	l raw milk	1
Electricity	kWh	0.102
Natural gas for heat	kWh	0.232
Total water	m ³	0.0028
Refrigerants	kg	7.19E-6
Detergents	kg	0.0038
Lubricant	kg	4.96E-5
Products	kg	Milk, milk concentrate, yoghurt, whipping cream
Transport per liter milk	km/l	0.006

-services

conculting in sustaina

Copyright notice

All rights reserved. The contents of this presentation (a. o. texts, graphics, photos, logos etc.) and the presentation itself are protected by copyright. They have been prepared by ESU-services Ltd.. Any distribution or presentation of the content is prohibited without prior written consent by ESU-services Ltd.. Without the written authorization by ESU-services Ltd. this document and/or parts thereof must not be distributed, modified, published, translated or reproduced, neither in form of photocopies, microfilming nor other - especially electronic - processes. This provison also covers the inclusion into or the evaluation by databases. Contraventions will entail legal prosecution.

In case of any questions, please contact:

Dr. Niels Jungbluth, CEO - Chief Executive Officer ESU-services Ltd. - fair consulting in sustainability Vorstadt 10 CH-8200 Schaffhausen <u>https://www.esu-services.ch</u> tel +41 44 940 61 32 jungbluth@esu-services.ch

© Copyright ESU-services Ltd. 2016

https://www.esuservices.ch